Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract Decomposition is the transformation of dead organic matter into its inorganic constituents. In most biomes, decomposition rates can be accurately predicted with simple mathematical models, but these models have long under‐predicted decomposition in globally extensive drylands.We posit that the exposed surface conditions characteristic of drylands make litter decomposition uniquely subject to microsite‐specific environmental controls and spatially variable microbial communities. As such, decomposition in dryland ecosystems—which are characterized by extremes in temporal heterogeneity of climate conditions and spatial heterogeneity of vegetation cover with corresponding microclimate variability—is a prime example of a macrosystems process that can be addressed by merging field data with new predictive process models operating across a hierarchical continuum of spatial scales and process resolutions.A macrosystems approach offers promise to reconcile model‐measurement discrepancies by integrating observations and experiments across multiple scales, from microsites (e.g. shrub sub‐canopy or intercanopy) to regions (e.g. across a 100s of km2study site with complex topography, precipitation and temperature) and ultimately to a continental perspective (e.g. North American drylands).Recent developments in technology and data availability position the scientific community to integrate laboratory, field, modelling and remote sensing approaches across a hierarchical range of scales to capture the spatiotemporal distribution of litter and environmental conditions needed to predict decay dynamics at the micro‐to‐macroscale. This multi‐scale approach promises a path forward to resolving a longstanding disconnect between measured data and modelled processes in dryland litter decomposition.Dryland litter decomposition presents an excellent case study for resolving spatially and temporally complex biogeochemical dynamics through a hierarchical, multidisciplinary macrosystems approach.We focus on dryland litter decomposition, but the hierarchical, multidisciplinary macrosystems approach we outline shows great potential for resolving other spatially and temporally complex biogeochemical processes across a wide range of ecosystems. Read the freePlain Language Summaryfor this article on the Journal blog.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Increases in the abundance of woody species have been reported to affect the provisioning of ecosystem services in drylands worldwide. However, it is virtually unknown how multiple biotic and abiotic drivers, such as climate, grazing, and fire, interact to determine woody dominance across global drylands. We conducted a standardized field survey in 304 plots across 25 countries to assess how climatic features, soil properties, grazing, and fire affect woody dominance in dryland rangelands. Precipitation, temperature, and grazing were key determinants of tree and shrub dominance. The effects of grazing were determined not solely by grazing pressure but also by the dominant livestock species. Interactions between soil, climate, and grazing and differences in responses to these factors between trees and shrubs were key to understanding changes in woody dominance. Our findings suggest that projected changes in climate and grazing pressure may increase woody dominance in drylands, altering their structure and functioning.more » « less
An official website of the United States government
